If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-16=59
We move all terms to the left:
x^2-16-(59)=0
We add all the numbers together, and all the variables
x^2-75=0
a = 1; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·1·(-75)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*1}=\frac{0-10\sqrt{3}}{2} =-\frac{10\sqrt{3}}{2} =-5\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*1}=\frac{0+10\sqrt{3}}{2} =\frac{10\sqrt{3}}{2} =5\sqrt{3} $
| 2n+45=5n+31 | | –5+2s=–7 | | Y=-29x+6 | | 7w=w+8w- | | 3y+53+7y-55=270 | | 3y+53+7y-55=290 | | 3/20=w/70 | | 4x-20=2x-30 | | 3y+53+7y-55=310 | | 5x-4=2x3 | | 3y+53+7y-55=320 | | -10w+13=-17 | | 3y+53+7y-55=300 | | 4.5x=11 | | 12+x=x+1 | | 3y+53+7y-55=220 | | Y=-25x+7 | | 14x=770 | | (D^3-6D^2+9D)y=0 | | 3y+53+7y-55=240 | | 1.4y=-3.36 | | 7x-x+3=21 | | 3y+53+7y-55=260 | | 2x-6+2x-6+x=180 | | -10w+13=-64 | | 15x-8=-4x+14 | | 2x2+17x=179 | | 9x+1+10x+2=20x-1 | | 3y+53+7y-55=280 | | -0.65x+0.45x=6.4 | | (3y+6)/3=5 | | 5(x-2)^2+17=62 |